外网世界杯买球[主頁]欢迎您

学校主页|信息门户
首页/ 正文

2022世界杯买球学术报告预告

2022年09月21日 16:02  点击:[]

学术报告一

报告题目: Optimization and convergence of numerical attractors for discrete-time quasi-linear lattice system

报告人:李扬荣,西南大学数学与统计学院,教授

报告时间:2022-09-23(星期五) 晚上19:00-20:00

报告地点:腾讯会议:319321198, 密码:7715

邀请人:王仁海,外网世界杯买球,(校聘)教授

欢迎参加!

摘要: In this talk, we focus on the numerical attractors for discrete-time p-Laplace lattice systems via the implicit Euler scheme. We show that the system has a uniqueconnectednumerical attractor withan optimized bound, which leads to the continuous convergence of the numerical attractors when the graph of the nonlinearity closes to the vertical axis or when the external force vanishes. A new type of Taylor expansion without Frechet derivatives is established and applied to show the discretization error of order two, which is crucial to prove that the numerical attractors converge upper semi-continuously to the global attractor of the original continuous-time system as the step size of the time goes to zero. It is also proved that the truncated numerical attractors for finitely dimensional systems converge upper semi-continuously to the numerical attractor and the lower semi-continuity holds in special cases. This is a joint work with S. Yang and T. Caraballo, which will appear in Siam NUM.

个人简历:李扬荣,西南大学数学与统计学院教授,博导。博士(南京大学1996), 博士后(北京应用物理与计算数学所)。现任重庆数学会副理事长, 曾任中国数学会理事。主要研究随机偏微分方程的渐近性态及其随机动力系统,先后在J Dyn Diff Equ,J DiffEqu,Phys D, J Appl Probab,Fract Cal Appl Anal等期刊上发表论文100多篇 (其中SCI论文90篇)。先后主持国家自然科学基金面上项目3项,教育部重点项目一项。 曾获重庆市自然科学奖二等奖及重庆市优教成果二等奖各一项。


学术报告二

报告题目: Upper Semicontinuity of Random Attractors for RDE with Nonlinear Diffusion Terms

报告人:谷安辉 ,西南大学数学与统计学院,副教授

报告时间:2022-09-23(星期五) 晚上20:10-21:10

报告地点:腾讯会议:319321198, 密码:7715

邀请人:王仁海,外网世界杯买球,(校聘)教授

欢迎参加!

摘要: We first show the existence of random attractor for the random differential equation with

nonlinear diffusion term driven by the approximation of the fractional noise, and then prove

the upper semicontinuity of the random attractors when the intensity of the approximations

tend to zero.

个人简历:谷安辉,西南大学副教授,从事无穷维随机与确定动力系统研究,在SIAM J APPL DYN SYST,JDE、DCDS等数学权威期刊上发表论文三十余篇,主持国家自然科学基金面上项目1项。

上一条:2022世界杯买球学术报告预告 下一条:外网世界杯买球2022年选聘科研助理拟聘用名单(公示)

关闭